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Abstract. We present a new type of temperature driven spin reorientation transition (SRT) in thin films.
It can occur when the lattice and the shape anisotropy favor different easy directions of the magnetization.
Due to different temperature dependencies of the two contributions the effective anisotropy may change
its sign and thus the direction of the magnetization as a function of temperature may change. Contrary to
the well-known reorientation transition caused by competing surface and bulk anisotropy contributions the
reorientation that we discuss is also found in film systems with a uniform lattice anisotropy. The results
of our theoretical model study may have experimental relevance for film systems with positive lattice
anisotropy, as e.g. thin iron films grown on copper.

PACS. 75.10.Jm Quantized spin models – 75.30.Ds Spin waves – 75.70.Ak Magnetic properties of mono-
layers and thin films

1 Introduction

In the last years nanophysics has attracted considerable
attention. With respect to technological application one
objective is to create ultrahigh density magnetic data
storage media. For the functionality of those compo-
nents the magnetic anisotropies in ultrathin film systems
are of crucial importance. The therewith directly con-
nected reorientation transition of the magnetization of
thin films and multilayer systems as a function of film
thickness, temperature, applied magnetic field, and struc-
tural variations has been studied intensively during the
last years. The orientation of the magnetization may vary
between the perpendicular (out-of-plane) and the paral-
lel (in-plane) direction to the film plane, as well as be-
tween certain directions within the film plane. Concern-
ing the first type of reorientation (in-plane vs. out-of-
plane) most frequently the reorientation from the perpen-
dicular to the in-plane magnetization with increasing film
thickness and temperature has been observed, in partic-
ular for Fe/Cu(001) [1], Fe/Ag(001) [2], Fe/Cr(110) [3],
CeH2/Fe(111) [4], Fe/Tb(111) [5], Co/Au(111) [6],
Co/Ru(111) [7], Co/Rh(111) [8], Co/Pd(111) [9] and other
film and multilayer systems.

The mechanism behind these temperature or thickness
dependent reorientations can be described as a surface or
interface effect. The lattice anisotropies at the film sur-
face/interface and within the film interior have different
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signs, one favoring parallel and the other favoring per-
pendicular alignment of the magnetization to the film
plane. In addition dipole-dipole interactions induce the
so-called shape-anisotropy which favors an in-plane mag-
netization for all layers. However, even if the layer resolved
anisotropy alone favored different directions of the mag-
netization at the film surface and in the film interior, the
much stronger ferromagnetic Heisenberg exchange cou-
pling aligns the magnetizations of the different layers al-
most parallel. This holds especially for ultrathin films. For
instance, in reference [10] parallel alignment was found for
a Fe-like film system up to 5 ML. The surface and interior
anisotropies thus compete to determine the direction of
the magnetization. For thinner films the surface contribu-
tion dominates while for thicker films d > dcrit the film
interior contribution overcomes the surface part.

Competing surface and interior contributions can also
lead to a temperature driven reorientation transition. The
effective anisotropy energy, i.e. the sum of the lattice and
shape anisotropy energies, decreases and vanishes with the
magnetization. On the other hand with increasing T the
magnetization of the surface layer of a film is reduced more
as compared to the film interior [11]. Thus when at T = 0
the surface contribution to the anisotropy dominates it
may become smaller than the interior contribution at a
certain critical temperature Treo. This kind of tempera-
ture driven spin reorientation transition due to compet-
ing surface and bulk contributions is well understood to-
day [12–18].
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Let us now discuss translational invariant systems
which have no surface and therefore no competing con-
tributions as described above. In these systems, a compe-
tition between shape and lattice anisotropy is still possi-
ble if the lattice anisotropy favors out of plane orientation
of the magnetization. Such a competition can lead to a
temperature driven reorientation transition if the lattice
and the shape anisotropy possessed different temperature
dependencies. This transition can not occur if the contri-
butions due to the second order lattice anisotropy K̃2(T )
and shape anisotropy g̃0(T ) have the same temperature
dependence (see e.g. Refs. [19,20]). In this paper, we use
a method resulting in different temperature dependencies
for the lattice and shape anisotropy. As a consequence, a
new type of temperature driven reorientation transition is
possible, that is solely caused by the competition between
lattice and shape anisotropy.

Before giving a more detailed account of our theoret-
ical description in the next section we briefly summarize
the main results for the effective anisotropy. The effective
anisotropy field is given by

K2eff (T ) = (2K2C(T ) − 3
2
Dg0)〈Sz′ 〉(T ) (1)

= K̃2(T ) + g̃0(T ). (2)

The sign of the effective anisotropy field determines the
magnetic easy axis. The latter is aligned perpendicular
to the film plane for positive effective anisotropy fields
K2eff > 0 and parallel to the film plane for negative effec-
tive anisotropy fields K2eff < 0. The effective anisotropy
field must not be confused with the magnetic anisotropy
energy since both quantities may show very different tem-
perature dependencies. However, the anisotropy field dis-
cussed here directly determines the excitation energies and
therewith also the magnetic free energy. Therefore the
magnetic reorientation can be discussed solely in terms
of this effective anisotropy field instead of considering the
magnetic anisotropy energy explicitly.

In equation (1) K2 denotes the microscopic anisotropy
parameter and g0 the dipolar coupling strength (note that
both quantities are parameters and that they are assumed
to be temperature independent in the following). D is a
constant determined by the lattice structure and 〈Sz′(T )〉
denotes the norm of the magnetization1. The decisive
quantity in equation (1) is the temperature dependent
function

C(T ) = 1 − 1
2S2

(
S(S + 1) − 〈S2

z′〉(T )
)
. (3)

By inspecting equation (1) it is obvious that K2eff (T ) may
change its sign as a function of temperature given that the
temperature dependence of C(T ) is strong enough. Note
again that no surface vs. interior competition is necessary
to explain this change of sign of K2eff (T ) which now turns
out to be a consequence of the different temperature de-
pendencies of the terms K̃2(T ) and g̃0(T ). Thus a change

1 Note that the norm of the magnetization 〈Sz′(T )〉 and its
component aligned perpendicularly to the film plane 〈Sz(T )〉
are denoted very similarly and must not be confused.

of sign of K2eff (T ) it also possible for translational invari-
ant systems as will be discussed in the next section.

To study the magnetic reorientation transition theo-
retically, one has to choose an appropriate model which
describes the important physics of the systems under con-
sideration. Furthermore certain approximations have to
be tolerated and justified to solve the model in most
cases. It turns out that the (local-spin) Heisenberg model
solved by the RPA approximation [21] describes very suc-
cessfully magnetic properties like spin wave spectra and
Curie-temperatures of the transition metals Fe, Co and
Ni. This finding is backed by ab-initio calculations with a
Heisenberg model [22] and with a Gutzwiller wave func-
tion approximation [23–25]. In reference [22] the materials
are described by an Heisenberg model. The real struc-
ture exchange parameters are calculated by use of the
magnetic force theorem [26–28]. The Heisenberg model
is solved by the RPA approximation to calculate the
Curie temperature as well as the spin wave stiffness.
Both quantities compare very well with the experimen-
tal ones. In references [23–25] the many body problem
posed by the strongly correlated d-electrons in the transi-
tion metals is solved for T = 0 using the LDA approx-
imation to density functional theory and a Gutzwiller
wave function approach (see Ref. [23] for the general
method, references [23,24] for the application to Ni and
reference [25] for the calculation of spin-waves in this
scheme). The properties of the transition metals are de-
scribed very successfully by this method (including Ni
where DFT+LDA fails to reproduce some experimental
findings [24]). The results of this method can therefore be
taken as a T = 0 reference. It was found that the spin-wave
spectra compare very well to those of an RPA-treatment of
the Heisenberg model, but differ considerably to those ob-
tained from a mean-field like treatment of a band-model.

However, in such a theoretical description using the
Heisenberg model the competition between the lattice and
the shape anisotropy will never lead to a change of sign of
the effective anisotropy as long as the lattice anisotropy is
described by a second order term and the shape anisotropy
is treated within mean-field (MF) theory [29], RPA [21], or
thermodynamical perturbation theory [30]. Furthermore,
it has been shown that a mean-field or RPA approximation
is inappropriate [31] for the local second order contribu-
tion to the lattice anisotropy which is given by

∑
i K2S

2
iz

(see e.g. Ref. [19]).
In references [32–34] a treatment of an extended

Heisenberg model for film systems is proposed includ-
ing an improved approximation for the lattice anisotropy
(generalized Anderson-Callen decoupling). It turns out
that this theory yields quantitative agreement with nu-
merically exact Quantum Monte Carlo calculations for the
field induced reorientation transition of a monolayer with
a positive and local second order contribution to the lat-
tice anisotropy [35]. Furthermore the decoupling of the
local anisotropy term fulfills the exact limiting case for
spin S = 1/2, where S2

z = 1/4 holds. Thus the commu-
tators [S+/−, S2

z ] trivially vanish and the anisotropy does
not influence the excitation spectrum for S = 1/2 in this
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model. This behavior is not reproduced by an RPA or MF
approximation.

The term C(T ) in equation (3) is a direct consequence
of the special decoupling scheme for the local K2-terms
and is missing if the lattice anisotropy term is treated in
MF or RPA approximation. The generalized Anderson-
Callen theory for the lattice anisotropy is thus a deci-
sive ingredient for the temperature dependent reorienta-
tion transition we discuss in this work.

2 Theory

In the following we want to present the theoretical
approach for the film system: As mentioned we want
to concentrate on translational invariant systems as
e.g. a two-dimensional monolayer. Thereto the following
Hamiltonian is used:

H = −
∑

ij

JijSiSj −
∑

i

gJµBB0Si −
∑

i

K2S
2
iz

+
1
2

∑

ij

g0

(
1
r3
ij

SiSj − 3
r5
ij

(Sirij)(Sjrij)

)

. (4)

This system is also a good model for films with finite thick-
nesses, but similar film parameters in all layers.

The first term describes the Heisenberg coupling Jij

between magnetic spin moments Si and Sj located at
sites i and j. Film thicknesses beyond monolayer can
be absorbed into the parameters Jij which can be used
to realize the Curie temperature of the film. The sec-
ond term contains an external magnetic field B0 in ar-
bitrary direction with the Landé factor (or more precisely
the spectroscopic splitting factor) gJ and the Bohr mag-
neton µB. The third and fourth term represent second
order lattice anisotropy and dipolar interaction, the lat-
ter leading to shape anisotropy. Siz is the z-component
of Si and is perpendicular to the film plane, rij is the
distance between lattice sites i and j in units of the
nearest neighbor distance a0. The shape anisotropy fa-
vors in-plane orientation of the magnetization, the lattice
anisotropy in-plane (K2 < 0) or out-of-plane (K2 > 0)
orientation. Our Hamiltonian is similar to that used in
references [19,31–33] for the investigation of the magnetic
anisotropy and the field induced reorientation transition.
This is the simplest Hamiltonian in which this new kind
of the spin reorientation occurs we discuss in this work.
Higher order anisotropy terms as e.g. K4-terms are not
taken into account. It turns out that there are many film
systems in which these higher order anisotropy terms can
be neglected because K4 � K2 [37].

g0 defines the dipolar coupling strength which is given
for point-dipols by

g∗0 = (gJµB)2/a3
0. (5)

For the nearest neighbor distance the value a0 = 1.81 Å
is chosen which is the value of Fe grown on Cu(001).
The Landé factor gJ is set gJ = 2.1 [38]. Note that in

our model the spin quantum number S is set to unity
S = 1. The dipole coupling is caused by interaction of
electrons with S = 1/2 and the contribution of the result-
ing shape-anisotropy to the effective anisotropy field scales
with 〈Sz′〉 (see Eqs. (1) and (2)). Therefore the parameter
g∗0 has to be renormalized and one gets g∗0 = 3.44µB kG.
Since the probability of finding the electrons and therefore
the magnetic dipolar moment is not concentrated in one
point g∗0 may slightly be above this value. In the following
the dipolar coupling strength is set to g0 = 3.8µB kG.

To simplify calculations we consider nearest neighbor
coupling only

Jij =
{

J (i), (j) n.n.
0 elsewhere. (6)

The theory used here is a combination of RPA approx-
imation for the nonlocal terms in equation (4) (Heisen-
berg exchange and dipolar interaction) and Anderson-
Callen approximation for the local lattice anisotropy term.
For a detailed presentation of this approach we refer to
references [32–34]. In the following we first comment on
two improvements as compared to our earlier theoretical
treatment and then summarize the main steps with the
most important formulas.
a) For convenience we neglected a certain type of Green

functions in the works [32,33] mentioned above,
namely

〈〈
S−

q , S−
−q

〉〉
,

〈〈
S+

q , S+
−q

〉〉
, and

〈〈
S−

q , S+
−q

〉〉
.

As was pointed out by Pini et al. in reference [34] these
Green functions are needed for a more accurate de-
scription of easy-plane systems. Additionally, the spin
wave excitations in the vicinity of the reorientation
transition are described better for easy plane as well
as for easy axis systems.

b) Furthermore we improve the treatment of the
dipolar anisotropy. It was mean-field decoupled in
references [32–34] while all other terms were treated
with the RPA [21] (exchange and Zeeman terms) or the
Anderson-Callen decoupling (K2 terms) [36]. Here we
treat the dipolar coupling in complete analogy to the
non-local exchange terms using the RPA decoupling.
This gives a q-dependent contribution to the spin-wave
energies. However, since the dipolar coupling is at least
three orders of magnitudes smaller than the Heisen-
berg exchange coupling, this term can be neglected
for all q > 0 where the Heisenberg exchange coupling
J determines the spin-wave energies. For the uniform
mode q → 0, on the other hand, the influence of the
Heisenberg exchange coupling vanishes and the dipo-
lar term gets important, since it is of the same order of
magnitude as the lattice anisotropy and the external
field. Therefore we take into account only the q = 0
contribution of the dipolar coupling. Note, that this
treatment differs from a MF decoupling of the dipo-
lar term. MF theory averages over the q-dependence.
In our approximation the q-dependent dipolar contri-
butions to the spin-wave energy are replaced by its
q = 0-component.

Let us now shortly summarize the theory [32,33] to solve
the Hamiltonian (4).
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1) In general, the magnetization M ∝ 〈Sz′〉 in the con-
sidered monolayer is not aligned parallel to the z-axis
of our fixed coordinate system (the z-axis is chosen to
be parallel to the film normal). First we rotate our co-
ordinate system Σ → Σ′ to align the z′-axis parallel
to the magnetization. Note that due to the symmetry
concerning the azimuthal angle φ we can always choose
φM = φB0 .

2) The polar angle of rotation θ is not fixed a priori. It
is determined self-consistently. The condition for de-
termining this angle is that the z′-contribution to the
magnetization is approximately a constant of motion,
i.e. after the approximations (decouplings of higher op-
erator products) are performed

dSz′

dt

RPA+A.C.−→ 0 (7)

holds. This condition leads to

[Siz′ , H ]−
RPA+A.C.−→ 0 (8)

and calculating the commutator and performing the
decoupling procedures gives:

gJµB(sθB0z − cθB0x)

+sθcθ〈Siz′〉(2K2C − 3
2
g0D) != 0. (9)

The abbreviations

cθ = cos θ

sθ = sin θ

D =
1
N

∑

ij

1
r3
ij

are used.
3) In the rotated system we write down the equations of

motion for the following Green functions (GF):

G =
(

G+−
ij G−−

ij

G++
ij G−+

ij

)
(10)

=
(〈〈

S+′
i , S−′

j

〉〉 〈〈
S−′

i , S−′
j

〉〉
〈〈

S+′
i , S+′

j

〉〉 〈〈
S−′

i , S+′
j

〉〉
)

. (11)

In our earlier work [32] only the GF G+−
ij was taken

into account and not the other GFs G−+
ij , G−−

ij , G++
ij

in the matrix (11). As mentioned above it was the pro-
posal of Pini et al. in reference [34] to take those GFs
also into account.
To solve this system of equations higher operator prod-
ucts have to be decoupled. For non-local operator
products, as e.g. Siz′Sj−′, we use the RPA decoupling

Siz′Sj−′
RPA−→ 〈Siz′ 〉Sj−′ + Siz′〈Sj−′〉. (12)

Since the magnetization is parallel to the z′-axis
〈Six′〉 = 〈Siy′〉 = 〈Si+′〉 = 〈Si−′〉 = 0 holds in the
above expression and the second summand vanishes.

For local operator products (K2 terms), the Anderson-
Callen decoupling is used, which leads in the primed
system to

Siz′Si+′/−′ + Si+′/−′Siz′
A.C.−→ 2〈Siz′〉C(T )Si+′/−′

(13)

with C(T ) as defined above.
As shown in reference [32] only with this procedure
the QMC results for the field induced reorientation
of reference [35] can be quantitatively reproduced and
the above-mentioned exact limiting case for S = 1/2 is
fulfilled. We checked, that these agreements still hold
for the theory presented here, which is slightly modi-
fied as compared to reference [31].

4) After decoupling and performing the two-dimensional
Fourier transformation

Si+′;−′;z′ =
1
N

∑

q

e−iqRiSq+′;−′;z′

we obtain the following system of equations:

Gq

(
EqI − Mq

)
= Xq (14)

with

Gq =
(

G+− G++

G−− G−+

)

q

(15)

Mq =
(

M+− M++

M−− M−+

)

q

(16)

Xq =
(

2〈Sz′〉 0
0 −2〈Sz′〉

)

q

. (17)

The matrix elements are given by

M+− = 2J(p − γq) + gJµB(sθB0x + cθB0z)

+(2K2C(T )− 3
2
g0D)〈Sz′〉(T )(c2

θ − 1
2
s2

θ)(18)

M−− = −(K2C(T ) − 3
4
g0D)〈Sz′〉(T )s2

θ (19)

M−+ = − (
M+−)

(20)

M++ = − (
M−−)

. (21)

where p denotes the coordination number within the
layer and γq is a structural factor due to the two-
dimensional Fourier transformation.

5) Solving for the spin Green functions yields weights
χα(q) and excitation energies Eα(q) = �ωα(q) which
in turn give the average magnon occupation number

ϕ(T ) =
1
N

∑

q

χ+(q)
eβE+(q) − 1

+
χ−(q)

eβE−(q) − 1
. (22)

The two terms describe the single-magnon excitations
of the system for a given wave vector q, namely magnon
creation (“+”) and magnon annihilation (“–”). The
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Fig. 1. K2eff (T )/〈Sz′〉(T ) (left axis) and C(T ) (right axis) are
shown as functions of temperature. Both decrease with increas-
ing temperature. At the reorientation temperature Treo ≈ 87 K
they have a sharp drop due to the reorientation and K2eff (T )
changes its sign. Henceforward the easy magnetic axis of the
monolayer is parallel to the film plane.

magnetization (in the rotated frame) can then be com-
puted from [29]:

〈Sz′〉 =
(1 + ϕ)2S+1(S − ϕ) + ϕ2S+1(S + 1 + ϕ)

(1 + ϕ)2S+1 − ϕ2S+1

(23)
and

〈S2
z′〉 = S(S + 1) − 〈Sz′〉(1 + 2ϕ). (24)

Equations (9–24) form a closed system of equations which
can be solved self-consistently.

In reference [39] the authors also investigate the tem-
perature dependence of the effective anisotropy using a
similar Hamiltonian as (4) and a similar method: however,
since the lattice anisotropy is chosen to be large as com-
pared to the shape anisotropy, no sign reversal of K2eff (T )
is found2.

A generalization to multilayers for the description of
more complex film systems is straightforward [32]. How-
ever, for our present purpose the monolayer Hamiltonian
in equation (4) is the simplest Hamiltonian in which this
new kind of spin reorientation occurs.

3 Results

Let us now discuss the main results of our work. We
choose the following parameters in our model study: as
mentioned before we set the spin quantum number S = 1.
The exchange parameter J is chosen such that Tc = 200 K

2 We want to point out that their theory fails for an ar-
bitrary direction of the external magnetic field. Some of our
key results which we present in the next section are obtained
for non-perpendicular alignment of B0 and film plane which
requires the improved treatment of th K2 anisotropy terms in
the equation of motion for Gq. For a more detailed comparison
of the two approaches we refer to reference [32].

holds [40] and the parameter K2 is set to 11µB kG [41].
Backed up by the point-dipole model the microscopic
dipolar strength is set to g0 = 3.8µB kG. Therewith the
chosen parameters are in a realistic range for e.g. thin Fe
films. In Figure 1 the effective anisotropy field normal-
ized by the magnetization K2eff (T )/〈Sz′〉(T ) (left axis)
and C(T ) (right axis) are shown as functions of tempera-
ture. As seen in equation (1), K2eff (T )/〈Sz′〉 depends lin-
early on C(T ) which depends on the temperature via the
factor 〈S2

z′〉(T ). The higher correlation function 〈S2
z′〉(T )

depends itself on the magnetization 〈Sz′〉(T ) and on the
magnon number ϕ(T) (see Eq. (24)). Due to the decrease
of C(T ) the sign of the anisotropy field K2eff (T ) changes
at Treo ≈ 87 K from positive to negative.

This sign reversal is accompanied by a sharp drop of
C(T ) and K2eff (T )/〈Sz′〉(T ). The reason for this is a dis-
continuous drop of the magnetization at the reorientation
due to the symmetry within the plane. At the point of
the change of sign of K2eff (T ), the magnetization sharply
rotates from perpendicular to parallel alignment to the
film plane as seen in Figure 2. Here the z-component
of the magnetization 〈Sz〉(T ) as well as the polar angle
θM (T ) (inset) are shown as functions of temperature for
g0 = 3.8µB kG (solid line). For comparison the g0 = 0-line
is also plotted (dashed line).

Strictly speaking for T > Treo the magnetization 〈Sz′〉
breaks down because according to the Mermin Wagner
theorem a finite magnetization at finite T is not consistent
with gapless excitations, i.e. with K2eff = 0. Therefore
quantities A like 〈S2

z′〉 and K2eff /〈Sz′〉 are calculated in
the limit process A(B = 0) = limBx→0+ A(Bx).

As seen in Figure 2 the reorientation caused by the
competition between shape and lattice anisotropy is miss-
ing for vanishing shape anisotropy g0 = 0. Additionally
the magnetization is reduced less with increasing temper-
ature even before the reorientation transition T < Treo.
This is because in our case the lattice and shape contri-
butions to the anisotropy field act against each other re-
sulting in a higher anisotropy field for vanishing shape
anisotropy. Generally, the higher K2eff the weaker the
magnetization is reduced with increasing temperature
since the Curie temperature Tc is a monotonically increas-
ing function of the effective anisotropy strength.

In the following we want to discuss some impor-
tant implications of this new type of temperature driven
reorientation transition. Due to the fact that the mag-
netization 〈Sz′〉 and the magnon number ϕ may also be
very sensitive to changes of the external field, the quan-
tities C and therewith K2eff are also functions of the ex-
ternal field B0. This is demonstrated in Figure 3 where
K2eff (B)/〈Sz′ 〉(B) (left axis) and C(B) (right axis) are
shown for a fixed temperature T1 = 95 K > Treo. Both
quantities increase with increasing external field. This is a
direct consequence of the increasing norm of the magneti-
zation 〈Sz′〉 and therewith the increase of its second mo-
ment 〈S2

z′〉. Due to the sensitive dependence of K2eff (B)
on C(B) it leads to a change of sign of K2eff (B) from
negative to positive caused by the external field. There-
fore the temperature driven change of sign of the effective



468 The European Physical Journal B

0 75 150 225 300 375
T [K]

0

0.2

0.4

0.6

0.8

1

<
S z> 0 150 300

T[K]

0
30
60
90

θ Μ
[°

]
g

0
=0

g
0
=0

Fig. 2. The z-component of the magnetization 〈Sz〉(T ) and
the polar angle θM (T ) (inset) are shown as functions of tem-
perature for g0 = 0 (dashed line) as well as for g0 = 3.8µB kG
(solid line).

0.41

0.42

0.43

0 0.25 0.5 0.75
B

0 [kG]

-0.2

0

0.2

0.4

K
2e

ff
/〈S

z’
〉

easy axis ⊥ film plane

easy axis ⎢⎢film plane

C
1 ’

θ
B

0
=40°

θ
B

0
=70°

θ
B

0
=90°

K
2eff

>0

K
2eff

<0

Fig. 3. K2eff (B)/〈Sz′〉(B) (left axis) and C(B) (right axis) are
shown for a fixed temperature T1 = 95K > Treo for different
directions of the external field. K2eff (B)/〈Sz′〉(B) changes its
sign from negative to positive caused by the external field.

anisotropy as discussed above may be compensated by an
external field aligned in arbitrary direction.

The two discussed effects could lead to the follow-
ing scenario: at a low temperature C(T < Treo) is large
enough for K2eff to be positive. C(T ) then decreases with
temperature until at T1 > Treo K2eff gets negative.

Now, if the temperature T is kept fix to T1 = 95 K
an external field applied in any direction can lead to an
increase of the norm of the magnetization 〈Sz′〉(B), its
second moment 〈S2

z′〉(B) and therewith C(B). Thus K2eff

can get positive again for B > Breo(T ). Having these con-
siderations in mind one can understand the remarkable
curves in Figure 4. An applied external field causes the
magnetization to rotate from an alignment parallel to the
film plane far beyond the direction of the external field,
before magnetization and external field become parallel
for large B0. For small fields the effective anisotropy is
still negative (see Fig. 3) and therefore the easy magnetic
axis is in-plane. Therefore the magnetization is aligned
between the magnetic easy axis and the direction of the
external field (θB0 < θM < 90◦). For a specific field
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Fig. 4. The polar angle of the magnetization θM (B) is shown
as a function of the external field (filled lines) for different
directions of the external fields (dashed lines) for a fixed tem-
perature T1 = 95 K > Treo . At the crossing point the effec-
tive anisotropy changes its sign from negative (easy axis ‖ film
plane) to positive (easy axis ⊥ film plane).

Bcrit the effective anisotropy vanishes (see Fig. 3) and
the magnetization is aligned parallel to the magnetic field
(crossing points of solid and dashed lines in Fig. 4). Then
for increasing magnetic field the effective anisotropy be-
comes positive and the new easy magnetic axis is out-
of-plane. Hence the magnetization is aligned between the
new easy magnetic axis and the direction of the external
field (0◦ < θM < θB0). For B ≈ Bcrit one thus obtains a
curious result: the magnetization is aligned parallel to the
external field at the critical field and rotates away from the
external field direction when the external field is further
enhanced. It appears as if the magnetization was repelled
by the external magnetic field.

4 Summary and conclusions

We have proposed a new type of temperature induced
reorientation transition caused by competing lattice and
shape anisotropy. It differs from the well-known reorien-
tation transitions caused by competing surface and bulk
contributions and can occur also in translational invari-
ant systems or uniform film systems (i.e. where the lattice
anisotropies are similar in all layers). We use a theory
which starts from an extended Heisenberg model includ-
ing the exchange coupling, the Zeeman term, the second
order lattice anisotropies, and the magnetic dipole cou-
pling. A decoupling scheme for the local K2-terms is used
which was shown to yield very good agreement with QMC
calculations before [32]. Obtaining different temperature
dependencies for the lattice and the shape contribution
to the effective anisotropy, we find a change of sign of the
effective anisotropy field K2eff (T ) with increasing temper-
ature.

Let us comment on the relevance on the proposed
mechanism for experiments: first, using a realistic magni-
tude of the dipolar interaction (g0 = 3.8µB kG), the lat-
tice anisotropy must be approximately K2 ∼ 10µB kG (for
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S = 1) to obtain a temperature dependent magnetic re-
orientation transition. This value is a realistic magnitude
for e.g. thin Fe/Cu(001) films [41]. Therefore our findings
might be relevant for real materials. Secondly, note that
this kind of transition is superimposed to the reorientation
due to surface-bulk competition and possibly complicates
the interpretation of experiments.

A very important consequence might follow for experi-
ments which measure the effective anisotropy K2eff (T, B)
using external magnetic fields (e.g. MOKE, FMR). As we
point out K2eff (T, B) may depend sensitively on the exter-
nal field in the vicinity of the discussed reorientation tran-
sition and may have another sign as the B = 0-effective
anisotropy K2eff (T, 0). It would be interesting to inves-
tigate experimentally this effect by measuring K2eff (B),
e.g. using FMR with different microwave frequencies.

Productive discussions with K. Baberschke, K. Lenz and P.J.
Jensen are gratefully acknowledged.
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